Eukaryotic Gene Structure

Eukaryotic Gene Structure

Promoter Structure for RNA Pol-I 

Genes, whether they are prokaryotic or eukaryotic, have the same structural features such as coding regions, promoter elements, and terminal sequences.

•       However, detailed organizations vary in terms of sequence blocks and their positions.  The major difference from prokaryotes is that the coding region is split into coding and noncoding regions.
Promoter regions and the ends of genes show different structural features, because eukaryotic genes, depending upon the kind of gene,they are transcribed by three different enzymes, whereas in prokaryotic systems all types of genes are transcribed by only one type of RNA polymerase, of course with different sigma factors for different set of genes.

Eukaryotic and prokaryotic gene structure 

•       It clearly means eukaryotic gene structure, especially promoter regions, including their regulatory regions and their structure are different and more complicated.
So far except for a few simple genes, understanding of others is nebulous; this is in spite of great strides made in gene cloning, sequencing, and expressions of genes in different cell types.

•       Genes transcribed by different enzymes have different structural features and different functions.

A.   Promoter Structure: For RNA pol-I : 

Genes for ribosomal RNA are exclusively transcribed by RNA polymerase-I.

•       In the eukaryotic system most active and highly productive genes, which are transcribed most of the time, are ribosomal RNA genes.
More than 90 % of the total RNA found in any eukaryotic cell is rRNA.

rRNA

•       Its synthesis is triggered, when cells are activated for cell proliferation, in such situations a tremendous increase of rRNA takes place, ex. rRNA synthesis during oogenesis is a par excellent example.

The rRNA genes themselves, at least in some cases get amplified by rolling circle mode of replication.  The demand for rRNA is very high in developing Oocyte for once the eggs are formed; rRNA is not synthesized for at least 6-7 cell cycles after fertilization, which means there should be a high concentration of stored rRNA in the Oocyte.

•       In almost all eukaryotic systems, rRNA genes are organized as clusters of tandemly repeated genes in secondary constriction region of chromosomes.
The number of genes found in the region range from 200 to 600 per genome.  These clusters are distributed to a few other chromosomes of the genome.  For example, Homo sapiens, have secondary constrictions for rRNA genes in five pairs of homologous chromosomes.

Chromosome

This illustrative diagram represents the assembly of Transcriptional complex on specific promoter elements. 

Prokaryotic Gene Structure

•       The most complicated organization of rRNA genes is one of the rRNA components called 5s RNA.  This rRNA gene is not located with major rRNA gene segments but found elsewhere.
The 5sRRNA genes are distributed all over the genomic chromosomes, some are found near the tips of certain chromosomes just behind telomeres, and others are located elsewhere.

•       In real terms, though the rRNA genes are clustered as tandem repeats, each of the ribosomal genes show their own structural features.
The tandemly repeated genes have spacers in between them, which is not transcribed.  The spacer regions can be as large as 2000 to 40,000bps long.

•       And the spacer regions themselves are organized into blocks, each of which has their own sequence elements that promote transcriptional initiation, perhaps they act as enhancers.  Basically, they all have what is an essential structural element of a promoter.
The consensus promoter elemental feature of all rRNA is the presence of core structure encompassing about 40 bp from the start site.

•       A consensus sequence that has been established from several rRNA genes is the presence of a sequence from the start site of transcription.
It is important to note the rRNA genes don’t have TATA boxes in their promoters.   But they contain an 11 base pair elements surrounding the start site called INR sequences;  (py) 2-C- [A]-(py) 5.  This is to some extent true for protein-coding genes.  At the start site, the sequence invariably starts with A and some times it is G.   

•       It has, what is termed as core promoter region between (-) 10 and (-) 45 and an upstream control element (UCE), it is the region to which upstream element binding factors bind.
Between –110 and –142 regions a GC rich sequence is present.

•       At the start region, it has –3(py) – A – 3-4 (py). 

Sterilization process

•       The core region attracts selectivity factor SL-I, 3 TAFs (TBP associated factors) and TBP (TATA-binding factors).  The positioning of the TBP is assisted and determined by the SL-I and then TAFs bring TBP.

This assembly ultimately brings RNA pol-I to the site.  But the activation depends on upstream control element binding factors UBF 1; they bind not only to the core but also to UCE.

•       UBFI binding results in protein-protein interaction in such a way two units of UBFs join with one another with a DNA loop and activate the RNA pol-I complex. 

The promoter of rRNA genes:

–142                     — 110                                            >
———I—-I————I—-I—————-I-promoter core—I—–ter-
GC rich                                 –45—–I>

[—CTCCGAGTCG (N) 5TGGGCCGCCGG—]

                        Transcription Terminator regions: 

Transcription termination takes far beyond the coding region of rRNA, and the region contains a sequence recognized by a set of proteins called ancillary factors, which make the RNAP I dissociate from the rRNA and the DNA template.

Click here to download a pdf form of notes

Top Keyword:

gene regulation in eukaryotes, chromatin immunoprecipitation, transcription in eukaryotes, prokaryotic and eukaryotic cells, gene expression in eukaryotes, gene expression in prokaryotes